Please use this identifier to cite or link to this item:
Title: Diagenesis of the Amposta offshore oil reservoir (Amposta Marino C2 well, Lower Cretaceous, Valencia Trough, Spain)
Author: Playà i Pous, Elisabet
Travé i Herrero, Anna
Caja, M.A.
Salas, Ramon (Salas Roig)
Martín, Juan Diego (Martín Martín)
Keywords: Calcària
Isòtops radioactius en geologia
Radioisotopes in geology
Issue Date: 1-Aug-2010
Publisher: Wiley Hindawi Publishing
Abstract: Samples from the Amposta Marino C2 well (Amposta oil field) have been investigated in order to understand the origin of fractures and porosity and to reconstruct the fluid flow history of the basin prior, during and after oil migration. Three main types of fracture systems and four types of calcite cements have been identified. Fracture types A and B are totally filled by calcite cement 1 (CC1) and 2 (CC2), respectively; fracture type A corresponds to pre‐Alpine structures, while type B is attributed to fractures developed during the Alpine compression (late Eocene‐early Oligocene). The oxygen, carbon and strontium isotope compositions of CC2 are close to those of the host‐rock, suggesting a high degree of fluid‐rock interaction, and therefore a relatively closed palaeohydrogeological system. Fracture type C, developed during the Neogene extension and enlarged by subaerial exposure, tend to be filled with reddish (CS3r) and greenish (CS3g) microspar calcite sediment and blocky calcite cement type 4 (CC4), and postdated by kaolinite, pyrite, barite and oil. The CS3 generation records lower oxygen and carbon isotopic compositions and higher 87Sr/86Sr ratios than the host‐limestones. These CS3 karstic infillings recrystallized early within evolved‐meteoric waters having very little interaction with the host‐rock. Blocky calcite cement type 4 (CC4 generation) has the lowest oxygen isotope ratio and the most radiogenic 87Sr/86Sr values, indicating low fluid‐rock interaction. The increasingly open palaeohydrogeological system was dominated by migration of hot brines with elevated oxygen isotope ratios into the buried karstic system. The main oil emplacement in the Amposta reservoir occurred after the CC4 event, closely related to the Neogene extensional fractures. Corrosion of CC4 (blocky calcite cement type 4) occurred prior to (or during) petroleum charge, possibly related to kaolinite precipitation from relatively acidic fluids. Barite and pyrite precipitation occurred after this corrosion. The sulphur source associated with the late precipitation of pyrite was likely related to isotopically light sulphur expelled, e.g. as sulphide, from the petroleum source rock (Ascla Fm).
Note: Reproducció del document publicat a:
It is part of: Geofluids, 2010, vol. 10, num. 3, p. 314-333
Related resource:
ISSN: 1468-8115
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
568994.pdf1.87 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons