Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/151424
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVerdú, B. (Buenaventura)-
dc.date.accessioned2020-02-28T11:54:27Z-
dc.date.available2020-02-28T11:54:27Z-
dc.date.issued1983-
dc.identifier.urihttps://hdl.handle.net/2445/151424-
dc.descriptionPreprint enviat per a la seva publicació en una revista científica: Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 31 (14-18):275-278 (1985)ca
dc.description.abstractIn this work we obtain axiomatizations of the concepts of lattice, distributive lattice, positive implication algebra, implication algebra, relative pseudocomplemented lattice, pseudoBoolean algebra and Boolean algebra by means of the concept of closure operator. The axiomatics express the algebra as a logical quotient of a logic having properties which reflect some classical rules of inference as adjunction, excluding cases, deduction and reductio at absurdum.ca
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherUniversitat de Barcelonaca
dc.relation.isformatofReproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 31.16]-
dc.relation.ispartofReproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 31.16x]-
dc.relation.ispartofseriesMathematics Preprint Series; 19ca
dc.rights(c) Verdú, B. (Buenaventura), 1983-
dc.sourcePreprints de Matemàtiques - Mathematics Preprint Series-
dc.subject.classificationTeoria de grups-
dc.subject.otherUniversitat de Barcelona. Institut de Matemàtica-
dc.titleSome algebraic structures determined by closure operatorsca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/submittedVersion-
dc.identifier.dlDL B 37494-1983-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Preprints de Matemàtiques - Mathematics Preprint Series

Files in This Item:
File Description SizeFormat 
MPS_N019.pdf419 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.