Please use this identifier to cite or link to this item:
Title: Product logic and the deduction theorem
Author: Adillón, Román
Verdú, B. (Buenaventura)
Keywords: Lògica matemàtica
Lògica algebraica
Universitat de Barcelona. Institut de Matemàtica
Issue Date: 1997
Publisher: Universitat de Barcelona
Series/Report no: Mathematics Preprint Series; 232
Abstract: In this paper we prove the following negative result: Product Logic [9] does not have the Deduction Theorem, that is, there is no binary defined connective in the language of Product Logic such that the Deduction Theorem is satisfied with respect to it. We prove this theorem mainly by using algebraic methods: we prove that Product Logic is algebraizable, that the variety of Product Algebras is its equivalent quasivariety semantics and that this variety has no equationally definable principal congruences.
Note: Preprint enviat per a la seva publicació en una revista científica.
Note: Reproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 37.27]
Appears in Collections:Preprints de Matemàtiques - Mathematics Preprint Series

Files in This Item:
File Description SizeFormat 
MPS_N232.pdf709 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.