Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/152822
Title: IrO2-Ta2O5|Ti electrodes prepared by electrodeposition from different Ir:Ta ratios for the degradation of polycyclic aromatic hydrocarbons
Author: Herrada García, Rosa Alhelí
Acosta-Santoyo, Gustavo
Sepúlveda-Guzmán, Selene
Brillas, Enric
Sirés Sadornil, Ignacio
Bustos, Erika
Keywords: Oxidació electroquímica
Electrolytic oxidation
Issue Date: 11-Jan-2018
Publisher: Elsevier Ltd
Abstract: This work investigates the feasibility of producing IrO2-Ta2O5|Ti electrodes by electrodeposition. Using precursor solutions with Ir:Ta molar ratios from 0:100 to 100:0, followed by thermal treatment, the goal was to find the optimal composition for enhancing the formation of hydroxyl radicals and providing long service lives. Scanning electron microscopy (SEM), coupled with energy dispersive X-ray spectroscopy (EDX), revealed that the production of homogeneous coatings with a good surface coverage and absence of agglomerates was only possible for electrodes with 70% or 100% Ir. The potential for O2 evolution was similar for all the electrodes containing Ir, at about 0.90 V vs Ag|AgCl. However, the ability to produce M(¿OH) clearly increased with increasing Ir in the Ir:Ta ratios (100:0 > 70:30 > 30:70 > 0:100). This observation was confirmed by the transformation of coumarin to 7-hydroxycoumarin as determined by spectroscopic and chromatographic techniques after treatment. Once manufactured and characterized, the electrodes were tested, as anodes, for the electro-oxidation of polycyclic aromatic hydrocarbons in aqueous solutions at natural pH (i.e., without pH adjustment). The anodes prepared from 70:30 and 100:0 ratios produced the fastest and highest removal rates, reaching 86% and 93% for phenanthrene and naphthalene, respectively, after 120 min at 50 mA. This was accompanied by a high degree of mineralization, as the result of direct and M(¿OH)-mediated oxidation, with some refractory intermediates remaining in the final solutions. The interaction between IrO2 and Ta2O5 oxides appeared to be important. The 100:0 anode provided high electrocatalytic effectiveness, whereas the anode with the 70:30 ratio provided improved long-term stability, as confirmed by its service life of about 93 h.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.electacta.2018.01.056
It is part of: Electrochimica Acta, 2018, vol. 263, p. 353-361
URI: http://hdl.handle.net/2445/152822
Related resource: https://doi.org/10.1016/j.electacta.2018.01.056
ISSN: 0013-4686
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
676052.pdf940.93 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons