Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/153079
Title: Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex
Author: Ye, Zhihong
Brillas, Enric
Centellas Masuet, Francesc A.
Cabot Julià, Pere-Lluís
Sirés Sadornil, Ignacio
Keywords: Depuració d'aigües residuals
Oxidació electroquímica
Purification of sewage
Electrolytic oxidation
Issue Date: 23-Oct-2019
Publisher: Elsevier Ltd
Abstract: This work reports the first investigation on the use of EDDS as chelating agent in photoelectro-Fenton (PEF) treatment of water at near-neutral pH. As a case study, the removal of the antidepressant fluoxetine was optimized, using an electrochemical cell composed of an IrO2-based anode an air-diffusion cathode for in-situ H2O2 production. Electrolytic trials at constant current were made in ultrapure water with different electrolytes, as well as in urban wastewater (secondary effluent) at pH 7.2. PEF with Fe(III)-EDDS (1:1) complex as catalyst outperformed electro-Fenton and PEF processes with uncomplexed Fe(II) or Fe(III). This can be explained by: (i) the larger solubilization of iron ions during the trials, favoring the production of ¿OH from Fenton-like reactions between H2O2 and Fe(II)-EDDS or Fe(III)-EDDS, and (ii) the occurrence of Fe(II) regeneration from Fe(III)-EDDS photoreduction, which was more efficient than conventional photo-Fenton reaction with uncomplexed Fe(III). The greatest drug concentration decays were achieved at low pH, using only 0.10 mM Fe(III)-EDDS in a 1:1 molar ratio, although complete removal in wastewater was feasible only with 0.20 mM Fe(III)-EDDS due to the greater formation of ¿OH. The effect of the applied current and anode nature was rather insignificant. A progressive destruction of the catalytic complex was unveiled, whereupon the mineralization mainly progressed thanks to the action of ¿OH adsorbed on the anode surface. Despite the incomplete mineralization using BDD as the anode, a remarkable toxicity decrease was determined. Fluoxetine degradation yielded F− and NO3− ions, along with several aromatic intermediates. These included two chloro-organics, as a result of the anodic oxidation of Cl− to active chlorine. A detailed mechanism for the Fe(III)-EDDS-catalyzed PEF treatment of fluoxetine in urban wastewater is finally proposed.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.watres.2019.115219
It is part of: Water Research, 2019, vol. 169, num. 115219
URI: http://hdl.handle.net/2445/153079
Related resource: https://doi.org/10.1016/j.watres.2019.115219
ISSN: 0043-1354
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
692849.pdf474.21 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons