Please use this identifier to cite or link to this item:
Title: Zn2+ ion surface enrichment in doped iron oxide nanoparticles leads to charge carrier density enhancement
Author: Bram, Stanley
Gordon, Matthew N.
Carbonell, Michael A.
Pink, Maren
Stein, Barry D.
Morgan, David Gene
Aguilà Avilés, David
Aromí Bedmar, Guillem
Skrabalak, Sara E.
Losovyj, Yaroslav
Bronstein, Lyudmila M.
Keywords: Òxid de ferro
Propietats magnètiques
Ferric oxide
Magnetic properties
Issue Date: 30-Nov-2018
Publisher: American Chemical Society
Abstract: Here, we report the development of monodisperse Zn-doped iron oxide nanoparticles (NPs) with different amounts of Zn (ZnxFe3-xO4, 0 < x < 0.43) by thermal decomposition of a mixture of zinc and iron oleates. The as-synthesized NPs show a considerable fraction of wüstite (FeO) which is transformed to spinel upon 2 h oxidation of the NP reaction solutions. At any Zn doping amounts, we observed the enrichment of the NP surface with Zn2+ ions, which is enhanced at higher Zn loadings. Such a distribution of Zn2+ ions is attributed to the different thermal decomposition profiles of Zn and Fe oleates, with Fe oleate decomposing at much lower temperature than that of Zn oleate. The decomposition of Zn oleate is, in turn, catalyzed by a forming iron oxide phase. The magnetic properties were found to be strongly dependent on the Zn doping amounts, showing the saturation magnetization to decrease by 9 and 20% for x = 0.05 and 0.1, respectively. On the other hand, X-ray photoelectron spectroscopy near the Fermi level demonstrates that the Zn0.05Fe2.95O4 sample displays a more metallic character (a higher charge carrier density) than undoped iron oxide NPs, supporting its use as a spintronic material.
Note: Reproducció del document publicat a:
It is part of: ACS Omega , 2018, vol. 3, num. 11, p. 16328-16337
Related resource:
ISSN: 2470-1343
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
683835.pdf5.46 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.