Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/153937
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoeyaert, Mariola-
dc.contributor.authorManolov, Rumen-
dc.contributor.authorRodabaugh, E.-
dc.date.accessioned2020-03-25T13:34:28Z-
dc.date.available2020-03-25T13:34:28Z-
dc.date.issued2020-
dc.identifier.issn0145-4455-
dc.identifier.urihttps://hdl.handle.net/2445/153937-
dc.description.abstractMultilevel modeling is an approach that can be used to summarize single-case experimental design (SCED) data. Multilevel models were developed to analyze hierarchical structured data with units at a lower level nested within higher level units. SCEDs use time series data collected from multiple cases (or subjects) within a study that allow researchers to investigate intervention effectiveness at the individual level and also to investigate how these individual intervention effects change over time. There is an increased interest in the field regarding how SCEDs can be used to establish an evidence base for interventions by synthesizing data from a series of intervention studies. Although using multilevel models to meta-analyze SCED studies is promising, application is often hampered by being potentially excessively technical. First, this article provides an accessible description and overview of the potential of multilevel meta-analysis to combine SCED data. Second, a summary of the methodological evidence on the performance of multilevel models for meta-analysis is provided, which is useful given that such evidence is currently scattered over multiple technical articles in the literature. Third, the actual steps to perform a multilevel meta-analysis are outlined in a brief practical guide. Fourth, a suggestion for integrating the quantitative results with a visual representation is provided.-
dc.format.extent31 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSAGE Publications-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1177/0145445518806867-
dc.relation.ispartofBehavior Modification, 2020, vol. 44, num. 2, p. 265-295-
dc.relation.urihttps://doi.org/10.1177/0145445518806867-
dc.rights(c) Moeyaert, M. et al., 2020-
dc.sourceArticles publicats en revistes (Psicologia Social i Psicologia Quantitativa)-
dc.subject.classificationInvestigació de cas únic-
dc.subject.classificationMetaanàlisi-
dc.subject.classificationModels multinivell (Estadística)-
dc.subject.otherSingle subject research-
dc.subject.otherMeta-analysis-
dc.subject.otherMultilevel models (Statistics)-
dc.titleMeta-Analysis of Single-Case Research via Multilevel Models: Fundamental Concepts and Methodological Considerations-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec682522-
dc.date.updated2020-03-25T13:34:28Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Psicologia Social i Psicologia Quantitativa)

Files in This Item:
File Description SizeFormat 
682522.pdf632.14 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.