Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/155380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorrentó Aguerri, Clara-
dc.contributor.authorPalau, Jordi-
dc.contributor.authorRodríguez Fernández, Diana-
dc.contributor.authorHeckel, B.-
dc.contributor.authorMeyer, A.-
dc.contributor.authorDomènech Ortí, Cristina-
dc.contributor.authorRosell, Mònica-
dc.contributor.authorSoler i Gil, Albert-
dc.contributor.authorElsner, M.-
dc.contributor.authorHunkeler, D.-
dc.date.accessioned2020-04-15T17:55:21Z-
dc.date.available2020-04-15T17:55:21Z-
dc.date.issued2017-05-09-
dc.identifier.issn0013-936X-
dc.identifier.urihttp://hdl.handle.net/2445/155380-
dc.description.abstractTo use compound-specific isotope analysis for confidently assessing organic contaminant attenuation in the environment, isotope fractionation patterns associated with different transformation mechanisms must first be explored in laboratory experiments. To deliver this information for the common groundwater contaminant chloroform (CF), this study investigated for the first time both carbon and chlorine isotope fractionation for three different engineered reactions: oxidative C-H bond cleavage using heat-activated persulfate, transformation under alkaline conditions (pH ∼ 12) and reductive C-Cl bond cleavage by cast zerovalent iron, Fe(0). Carbon and chlorine isotope fractionation values were −8 ± 1 and −0.44 ± 0.06 for oxidation, −57 ± 5 and −4.4 ± 0.4 for alkaline hydrolysis (pH 11.84 ± 0.03), and −33 ± 11 and −3 ± 1 for dechlorination, respectively. Carbon and chlorine apparent kinetic isotope effects (AKIEs) were in general agreement with expected mechanisms (C-H bond cleavage in oxidation by persulfate, C-Cl bond cleavage in Fe(0)-mediated reductive dechlorination and E1CB elimination mechanism during alkaline hydrolysis) where a secondary AKIECl (1.00045 ± 0.00004) was observed for oxidation. The different dual carbon-chlorine (Δδ13C vs Δδ37Cl) isotope patterns for oxidation by thermally activated persulfate and alkaline hydrolysis (17 ± 2 and 13.0 ± 0.8, respectively) vs reductive dechlorination by Fe(0) (8 ± 2) establish a base to identify and quantify these CF degradation mechanisms in the field.-
dc.format.extent31 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.est.7b00679-
dc.relation.ispartofEnvironmental Science & Technology, 2017, vol. 51, num. 11, p. 6174-6184-
dc.relation.urihttps://doi.org/10.1021/acs.est.7b00679-
dc.rights(c) American Chemical Society , 2017-
dc.sourceArticles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)-
dc.subject.classificationGeoquímica-
dc.subject.classificationGeologia isotòpica-
dc.subject.otherGeochemistry-
dc.subject.otherIsotope geology-
dc.titleCarbon and chlorine isotope fractionation patterns associated with different engineered chloroform transformation reactions-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec662478-
dc.date.updated2020-04-15T17:55:22Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
662478.pdf2.11 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.