Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/155665
Title: | Semilinear fractional stochastic differential equations driven by a $\gamma$ -Hölder continuous signal with $\gamma>2 / 3$ |
Author: | León, Jorge A. Márquez, David (Márquez Carreras) |
Keywords: | Equacions integrals estocàstiques Processos de moviment brownià Equacions integrals Stochastic integral equations Brownian motion processes Integral equations |
Issue Date: | 2019 |
Publisher: | World Scientific Publishing |
Abstract: | In this paper, we use the techniques of fractional calculus to study the existence of a unique solution to semilinear fractional differential equation driven by a $\gamma$ -Hölder continuous function $\theta$ with $\gamma \in\left(\frac{2}{3}, 1\right) .$ Here, the initial condition is a function that may not be defined at zero and the involved integral with respect to $\theta$ is the extension of the Young integral [An inequality of the Hölder type, connected with Stieltjes integration, Acta Math.67 (1936) 251-282] given by Zähle [Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields111 (1998) $333-374]$ |
Note: | Versió postprint del document publicat a: https://doi.org/10.1142/S0219493720500392 |
It is part of: | Stochastics and Dynamics, 2019 |
URI: | https://hdl.handle.net/2445/155665 |
Related resource: | https://doi.org/10.1142/S0219493720500392 |
ISSN: | 0219-4937 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
697874.pdf | 448.6 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.