Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/158020
Title: Selective Photokilling of Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine
Author: Er,Özge
Colak, Suleyman Gokhan
Ocakoglu, Kasim
Ince, Mine
Bresolí-Obach, Roger
Mora Giménez, Margarita
Sagristá Gratovil, M. Lluïsa
Yurt, Fatma
Nonell, Santi
Keywords: Càncer
Ftalocianines
Nanopartícules
Sílice
Tractament adjuvant del càncer
Cancer
Phthalocyanines
Nanoparticles
Silica
Adjuvant treatment of cancer
Issue Date: 24-Oct-2018
Publisher: MDPI
Abstract: Background: Photodynamic therapy (PDT) is a non-invasive and innovative cancer therapy based on the photodynamic effect. In this study, we sought to determine the singlet oxygen production, intracellular uptake, and in vitro photodynamic therapy potential of Cetixumab-targeted, zinc(II) 2,3,9,10,16,17,23,24-octa(tert-butylphenoxy))phthalocyaninato(2-)-N29,N30,N31,N32 (ZnPcOBP)- loaded mesoporous silica nanoparticles against pancreatic cancer cells. Results: The quantum yield (Φ∆) value of ZnPcOBP was found to be 0.60 in toluene. In vitro cellular studies were performed to determine the dark- and phototoxicity of samples with various concentrations of ZnPcOBP by using pancreatic cells (AsPC-1, PANC-1 and MIA PaCa-2) and 20, 30, and 40 J/cm2 light fluences. No dark toxicity was observed for any sample in any cell line. ZnPcOBP alone showed a modest photodynamic activity. However, when incorporated in silica nanoparticles, it showed a relatively high phototoxic effect, which was further enhanced by Cetuximab, a monoclonal antibody that targets the Epidermal Growth Factor Receptor (EGFR). The cell-line dependent photokilling observed correlates well with EGFR expression levels in these cells. Conclusions: Imidazole-capped Cetuximab-targeted mesoporous silica nanoparticles are excellent vehicles for the selective delivery of ZnPcOBP to pancreatic cancer cells expressing the EGFR receptor. The novel nanosystem appears to be a suitable agent for photodynamic therapy of pancreatic tumors
Note: Reproducció del document publicat a: https://doi.org/10.3390/molecules23112749
It is part of: Molecules, 2018, vol. 23 , num. 11, p. 2749
URI: http://hdl.handle.net/2445/158020
Related resource: https://doi.org/10.3390/molecules23112749
ISSN: 1420-3049
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
688111.pdf2.58 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons