Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/158097
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPalacio Bonet, Francisco-
dc.contributor.authorFonollosa, Jordi-
dc.contributor.authorBurgués, Javier-
dc.contributor.authorGómez Cama, José María-
dc.contributor.authorMarco Colás, Santiago-
dc.date.accessioned2020-04-30T09:02:48Z-
dc.date.available2020-04-30T09:02:48Z-
dc.date.issued2020-04-10-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/2445/158097-
dc.description.abstractMetal Oxide (MOX) gas sensors rely on chemical reactions that occur efficiently at high temperatures, resulting in too-demanding power requirements for certain applications. Operating the sensor under a Pulsed-Temperature Operation (PTO), by which the sensor heater is switched ON and OFF periodically, is a common practice to reduce the power consumption. However, the sensor performance is degraded as the OFF periods become larger. Other research works studied, generally, PTO schemes applying waveforms to the heater with time periods of seconds and duty cycles above 20%. Here, instead, we explore the behaviour of PTO sensors working under aggressive schemes, reaching power savings of 99% and beyond with respect to continuous heater stimulation. Using sensor sensitivity and the limit of detection, we evaluated four Ultra Low Power (ULP) sensors under different PTO schemes exposed to ammonia, ethylene, and acetaldehyde. Results show that it is possible to operate the sensors with total power consumption in the range of microwatts. Despite the aggressive power reduction, sensor sensitivity suffers only a moderate decline and the limit of detection may degrade up to a factor five. This is, however, gas-dependent and should be explored on a case-by-case basis since, for example, the same degradation has not been observed for ammonia. Finally, the run-in time, i.e., the time required to get a stable response immediately after switching on the sensor, increases when reducing the power consumption, from 10 minutes to values in the range of 10-20 hours for power consumptions smaller than 200 microwatts.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/ACCESS.2020.2987066-
dc.relation.ispartofIEEE Access, 2020, vol. 8-
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.2987066-
dc.rightscc-by (c) Palacio Bonet, Francisco et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationDetectors de gasos-
dc.subject.classificationConsum d'energia-
dc.subject.otherGas detectors-
dc.subject.otherEnergy consumption-
dc.titlePulsed-temperature metal oxide gas sensors for microwatt power consumption-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec699062-
dc.date.updated2020-04-30T09:02:48Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/712949/EU//TECNIOspring PLUS-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
699062.pdf6.77 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons