Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) Albalate et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/158714

Ensuring Stability, Accuracy and Meaningfulness in Synthetic Control Methods: The Regularized SHAP-Distance Method

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The synthetic control method (SCM) has been increasingly adopted to evaluate causal effects under quasi-experimental designs. However, SCM suffers from sound weaknesses that compromise its accuracy, stability and meaningfulness. The Regularized SHAP-distance synthetic control method (RSD-SCM) is proposed as solution. We evaluate the economic effect of the government formation deadlock in Spain, 2016. The deadlock did not negatively affect economic growth, as the economy grew 1.58% more without full government; standard SCM method overestimates the effect by 0.23 pp. We show that RSD-SCM offers higher accuracy and stability, while ensuring the economic meaningfulness of covariates used in building the counterfactual.

Citació

Citació

ALBALATE, Daniel, BEL I QUERALT, Germà, MAZAIRA-FONT, Ferran. Ensuring Stability, Accuracy and Meaningfulness in Synthetic Control Methods: The Regularized SHAP-Distance Method. _IREA – Working Papers_. 2020. Vol.  IR20/05. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/158714]

Exportar metadades

JSON - METS

Compartir registre