Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/159077
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMarzo Sánchez, Jordi-
dc.contributor.authorRibera Baraut, Pol-
dc.date.accessioned2020-05-07T08:15:58Z-
dc.date.available2020-05-07T08:15:58Z-
dc.date.issued2019-06-28-
dc.identifier.urihttp://hdl.handle.net/2445/159077-
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Director: Jordi Marzo Sánchezca
dc.description.abstract[en] Let $\mathbb{S}^{k}=\left\{x \in \mathbb{R}^{k+1} ;\|x\|=1\right\}$ be the unit sphere in $\mathbb{R}^{k+1}$ and consider the normalized surface area measure $\sigma^{*}$. It is well known that a set of $n$ points $x_{1}, \ldots, x_{n} \in \mathbb{S}^{k}$ is asymptotically uniformly distributed, i.e., the probability measure $\frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j}}$ converges in the weak- $^{*}$ topology to $\sigma^{*},$ if and only if the spherical cap discrepancy of the set $P=\left\{x_{1}, \ldots, x_{n}\right\},$ defined as \[ \mathbb{D}_{n}(P)=\sup _{C(x, t) \subset S^{k}}\left|\operatorname{card}(P \cap C(x, t))-n \sigma^{*}(C(x, t))\right| \] where \[ C(x, t)=\left\{y \in \mathbb{S}^{k} ;\langle x, y\rangle \leq t\right\} \] is a spherical cap on $\mathbb{S}^{k}$ with $x \in \mathbb{S}^{k}$ and $-1 \leq t \leq 1,$ converges to zero when $n \rightarrow \infty$ It is therefore natural to consider the velocity of this convergence as a measure of the distribution of the sets $P$ In a couple of papers from $1984,$ J. Beck established the following results, which give the best bounds known up to now, [5,6]: - There exist $n$ -element sets of points $P \subset \mathbb{S}^{k}$ such that \[ \mathbb{D}_{n}(P) \lesssim n^{\frac{1}{2}-\frac{1}{2 k}} \sqrt{\log n} \] - For any $n$ -element set of points $P \subset \mathbb{S}^{k}$ \[ \mathbb{D}_{n}(P) \gtrsim n^{\frac{1}{2}-\frac{1}{2 k}} \] It is not known if any of these bounds is sharp. The lower bound uses Fourier analysis and the upper bound some random configurations in regular area partitions of the sphere. The main objective of this master thesis is to study J. Beck's work and the "almost tight" examples obtained through determinantal point processes [9].ca
dc.format.extent55 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Pol Ribera Baraut, 2019-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada-
dc.subject.classificationDistribució (Teoria de la probabilitat)cat
dc.subject.classificationProcessos puntualscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherDistribution (Probability theory)eng
dc.subject.otherPoint processeseng
dc.subject.otherMaster's theseseng
dc.titleMinimal discrepancy points on the sphereca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Matemàtica Avançada

Files in This Item:
File Description SizeFormat 
159077.pdfMemòria516.79 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons