Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/159485
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Seguí Mesquida, Santi | - |
dc.contributor.author | Ivanov, Stefan | - |
dc.date.accessioned | 2020-05-11T09:22:45Z | - |
dc.date.available | 2020-05-11T09:22:45Z | - |
dc.date.issued | 2019-06-28 | - |
dc.identifier.uri | https://hdl.handle.net/2445/159485 | - |
dc.description | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Santi Seguí Mesquida | ca |
dc.description.abstract | [en] Capsule endoscopy is a non-invasive medical procedure used to record images of the gastrointestinal tract. While this method is a better alternative for patients, it presents a difficulty to doctors who need to go over as much as 50000 images. Scientists are developing machine learning algorithms that will automatically throw away images free of any anomalies. Like other medical applications, however, available data to train such models is sparse. Therefore, we attempt to create synthetic images that can be used as substitution. For the purpose we have used generative adversarial networks (GANs) as they have recently shown great promise for problems like this one. Training a classifier on both the real and synthetic data, we achieve an increase in the classification accuracy for a dataset of intestine images. | ca |
dc.format.extent | 39 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Stefan Ivanov, 2019 | - |
dc.rights | codi: GPL (c) Stefan Ivanov, 2019 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.rights.uri | http://www.gnu.org/licenses/gpl-3.0.ca.html | * |
dc.source | Màster Oficial - Fonaments de la Ciència de Dades | - |
dc.subject.classification | Gastroscòpia | - |
dc.subject.classification | Aprenentatge automàtic | - |
dc.subject.classification | Treballs de fi de màster | - |
dc.subject.classification | Algorismes computacionals | - |
dc.subject.classification | Xarxes neuronals (Informàtica) | - |
dc.subject.other | Gastroscopy | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Master's theses | - |
dc.subject.other | Algoritmos computacionales | - |
dc.subject.other | Neural networks (Computer science) | - |
dc.title | Generating synthetic intestine images | ca |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Programari - Treballs de l'alumnat Màster Oficial - Fonaments de la Ciència de Dades |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
overview.pdf | overview | 27.99 kB | Adobe PDF | View/Open |
159485.pdf | Memòria | 8.17 MB | Adobe PDF | View/Open |
codi_font.zip | Codi font | 43 MB | zip | View/Open |
This item is licensed under a
Creative Commons License