Please use this identifier to cite or link to this item:
Title: Clustering analysis strategies for electron energy loss spectroscopy (EELS).
Author: Torruella Besa, Pau
Estradé Albiol, Sònia
López-Ortega, Alberto
Baró, M. D.
Varela, María
Peiró Martínez, Francisca
Keywords: Espectroscòpia de pèrdua d'energia d'electrons
Electron energy loss spectroscopy
Issue Date: 2018
Publisher: Elsevier B.V.
Abstract: In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyse electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from Fe3O4/Mn3O4 core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra. A second approach is to analyse spectral variance with principal component analysis (PCA) within a given data cluster. Lastly, data clustering on PCA score maps is discussed. The advantages and requirements of each approach are studied. Results demonstrate how clustering is able to recover compositional and oxidation state information from EELS data with minimal user input, giving great prospects for its usage in EEL spectroscopy.
Note: Versió postprint del document publicat a:
It is part of: Ultramicroscopy, 2018, vol. 185, p. 42-48
Related resource:
ISSN: 0304-3991
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Química Inorgànica i Orgànica)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
675378.pdf1.69 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons