Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/162481
Title: Shear localisation in anisotropic, non-linear viscous materials that develop a CPO: A numerical study
Author: de Riese, Tamara
Evans, L.
Gómez Rivas, Enrique
Griera, Albert
Lebensohn, Ricardo A.
Llorens, Maria-Gema
Ran, H.
Sachau, Till
Weikusat, I.
Bons, Paul D.
Keywords: Anisotropia
Anisotropy
Issue Date: 1-Jul-2019
Publisher: Elsevier Ltd
Abstract: Localisation of ductile deformation in rocks is commonly found at all scales from crustal shear zones down to grain scale shear bands. Of the various mechanisms for localisation, mechanical anisotropy has received relatively little attention, especially in numerical modelling. Mechanical anisotropy can be due to dislocation creep of minerals (e.g. ice or mica) and/or layering in rocks (e.g. bedding, cleavage). We simulated simple-shear deformation of a locally anisotropic, single-phase power-law rheology material up to shear strain of five. Localisation of shear rate in narrow shear bands occurs, depending on the magnitude of anisotropy and the stress exponent. At high anisotropy values, strain-rate frequency distributions become approximately log-normal with heavy, exponential tails. Localisation due to anisotropy is scale-independent and thus provides a single mechanism for a self-organised hierarchy of shear bands and zones from mm-to km-scales. The numerical simulations are compared with the natural example of the Northern Shear Belt at Cap de Creus, NE Spain.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.jsg.2019.03.006
It is part of: Journal of Structural Geology, 2019, vol. 124, p. 81-90
URI: http://hdl.handle.net/2445/162481
Related resource: https://doi.org/10.1016/j.jsg.2019.03.006
ISSN: 0191-8141
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
693345.pdf4.14 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons