Please use this identifier to cite or link to this item:
Title: Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain)
Author: Blázquez-Pallí, N.
Rosell, Mònica
Varias, Joan
Bosch, M.
Soler i Gil, Albert
Vicent, Teresa
Marco-Urrea, E.
Keywords: Isòtops estables en ecologia
Barcelona (Catalunya)
Stable isotopes in ecological research
Barcelona (Catalonia)
Issue Date: 1-Jan-2019
Publisher: Elsevier B.V.
Abstract: The bioremediation potential of an aquifer contaminated with tetrachloroethene (PCE) was assessed by combining hydrogeochemical data of the site, microcosm studies, metabolites concentrations, compound specific-stable carbon isotope analysis and the identification of selected reductive dechlorination biomarker genes. The characterization of the site through 10 monitoring wells evidenced that leaked PCE was transformed to TCE and cis-DCE via hydrogenolysis. Carbon isotopic mass balance of chlorinated ethenes pointed to two distinct sources of contamination and discarded relevant alternate degradation pathways in the aquifer. Application of specific-genus primers targeting Dehalococcoides mccartyi species and the vinyl chloride-to-ethene reductive dehalogenase vcrA indicated the presence of autochthonous bacteria capable of the complete dechlorination of PCE. The observed cis-DCE stall was consistent with the aquifer geochemistry (positive redox potentials; presence of dissolved oxygen, nitrate, and sulphate; absence of ferrous iron), which was thermodynamically favourable to dechlorinate highly chlorinated ethenes but required lower redox potentials to evolve beyond cis-DCE to the innocuous end product ethene. Accordingly, the addition of lactate or a mixture of ethanol plus methanol as electron donor sources in parallel field-derived anoxic microcosms accelerated dechlorination of PCE and passed cis-DCE up to ethene, unlike the controls (without amendments, representative of field natural attenuation). Lactate fermentation produced acetate at near-stoichiometric amounts. The array of techniques used in this study provided complementary lines of evidence to suggest that enhanced anaerobic bioremediation using lactate as electron donor source is a feasible strategy to successfully decontaminate this site.
Note: Versió postprint del document publicat a:
It is part of: Environmental Pollution, 2019, vol. 244, p. 165-173
Related resource:
ISSN: 0269-7491
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
680819.pdf810.76 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons