Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/164060| Title: | Univalent wandering domains in the Eremenko-Lyubich class |
| Author: | Fagella Rabionet, Núria Jarque i Ribera, Xavier Lazebnik, Kirill |
| Keywords: | Funcions de variables complexes Sistemes dinàmics complexos Funcions meromorfes Functions of complex variables Complex dynamical systems Meromorphic functions |
| Issue Date: | 2019 |
| Publisher: | Springer |
| Abstract: | We use the Folding Theorem of [Bis15] to construct an entire function $f$ in class $\mathcal{B}$ and a wandering domain $U$ of $f$ such that $f$ restricted to $f^{n}(U)$ is univalent, for all $n \geq 0$. The components of the wandering orbit are bounded and surrounded by the postcritical set. |
| Note: | Versió postprint del document publicat a: https://doi.org/10.1007/s11854-027-0079-x |
| It is part of: | Journal d'Analyse Mathematique, 2019, vol. 139, num. 1, p. 369-395 |
| URI: | https://hdl.handle.net/2445/164060 |
| Related resource: | https://doi.org/10.1007/s11854-027-0079-x |
| ISSN: | 0021-7670 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 678366.pdf | 516.73 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
