Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/164100| Title: | Singular values and bounded Siegel disks |
| Author: | Benini, Anna Miriam Fagella Rabionet, Núria |
| Keywords: | Funcions meromorfes Sistemes dinàmics complexos Meromorphic functions Complex dynamical systems |
| Issue Date: | 1-Sep-2018 |
| Publisher: | Cambridge University Press |
| Abstract: | Let $f$ be an entire transcendental function of finite order and $\Delta$ be a forward invariant bounded Siegel disk for $f$ with rotation number in Herman's class . We show that if $f$ has two singular values with bounded orbit, then the boundary of $\Delta$ contains a critical point. We also give a criterion under which the critical point in question is recurrent. We actually prove a more general theorem with less restrictive hypotheses, from which these results follow. |
| Note: | Versió postprint del document publicat a: https://doi.org/10.1017/S0305004117000469 |
| It is part of: | Mathematical Proceedings of the Cambridge Philosophical Society, 2018, vol. 165, num. 2, p. 249-265 |
| URI: | https://hdl.handle.net/2445/164100 |
| Related resource: | https://doi.org/10.1017/S0305004117000469 |
| ISSN: | 0305-0041 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 672806.pdf | 222.61 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
