Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaranski, Krzysztof-
dc.contributor.authorFagella Rabionet, Núria-
dc.contributor.authorJarque i Ribera, Xavier-
dc.contributor.authorKarpinska, Boguslawa-
dc.description.abstractWe consider holomorphic maps $f: U \rightarrow U$ for a hyperbolic domain $U$ in the complex plane, such that the iterates of $f$ converge to a boundary point $\zeta$ of $U$. By a previous result of the authors, for such maps there exist nice absorbing domains $W \subset U$. In this paper we show that $W$ can be chosen to be simply connected, if $f$ has doubly parabolic type in the sense of the Baker-Pommerenke-Cowen classification of its lift by a universal covering (and $\zeta$ is not an isolated boundary point of $U$). We also provide counterexamples for other types of the map $f$ and give an exact characterization of doubly parabolic type in terms of the dynamical behaviour of $f$.-
dc.format.extent19 p.-
dc.publisherLondon Mathematical Society-
dc.relation.isformatofVersió postprint del document publicat a:
dc.relation.ispartofJournal of the London Mathematical Society-Second Series, 2015, vol. 92, num. 1, p. 144-162-
dc.rights(c) London Mathematical Society, 2015-
dc.subject.classificationFuncions de variables complexes-
dc.subject.classificationFuncions meromorfes-
dc.subject.classificationSistemes dinàmics complexos-
dc.subject.otherFunctions of complex variables-
dc.subject.otherMeromorphic functions-
dc.subject.otherComplex dynamical systems-
dc.titleAbsorbing sets and Baker domains for holomorphic maps-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
645470.pdf351.14 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.