Por favor, use este identificador para citar o enlazar este documento: https://hdl.handle.net/2445/164417
Título: Interpolation and Sampling Hypersurfaces for the Bargmann-Fock space in higher dimensions
Autor: Ortega Cerdà, Joaquim
Schuster, Alexander
Varolin, Dror
Materia: Funcions meromorfes
Funcions enteres
Meromorphic functions
Entire functions
Fecha de publicación: 2006
Publicado por: Springer Verlag
Resumen: We study those smooth complex hypersurfaces $W$ in $\C ^n$ having the property that all holomorphic functions of finite weighted $L^p$ norm on $W$ extend to entire functions with finite weighted $L^p$ norm. Such hypersurfaces are called interpolation hypersurfaces. We also examine the dual problem of finding all sampling hypersurfaces, i.e., smooth hypersurfaces $W$ in $\C ^n$ such that any entire function with finite weighted $L^p$ norm is stably determined by its restriction to $W$. We provide sufficient geometric conditions on the hypersurface to be an interpolation and sampling hypersurface. The geometric conditions that imply the extension property and the restriction property are given in terms of some directional densities.
Nota: Versió postprint del document publicat a: https://doi.org/10.1007/s00208-005-0726-3
Es parte de: Mathematische Annalen, 2006, vol. 335, num. 1, p. 79-107
URI: https://hdl.handle.net/2445/164417
Recurso relacionado: https://doi.org/10.1007/s00208-005-0726-3
ISSN: 0025-5831
Aparece en las colecciones:Articles publicats en revistes (Matemàtiques i Informàtica)

Archivos de este documento:
Archivo Descripción DimensionesFormato 
529508.pdf295.74 kBAdobe PDFMostrar/Abrir


Este documento tiene todos los derechos reservados