Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/164422
Title: | Fourier frames |
Author: | Ortega Cerdà, Joaquim Seip, Kristian |
Keywords: | Anàlisi harmònica Funcions de variables complexes Funcions analítiques Anàlisi funcional Harmonic analysis Functions of complex variables Analytic functions Functional analysis |
Issue Date: | May-2002 |
Publisher: | Princeton University Press |
Abstract: | We solve the problem of Duffin and Schaeffer (1952) of characterizing those sequences of real frequencies which generate Fourier frames. Equivalently, we characterize the sampling sequences for the Paley-Wiener space. The key step is to connect the problem with de Branges' theory of Hilbert spaces of entire functions. We show that our description of sampling sequences permits us to obtain a classical inequality of H.~Landau as a consequence of Pavlov's description of Riesz bases of complex exponentials and the John-Nirenberg theorem. Finally, we discuss how to transform our description into a working condition by relating it to an approximation problem for subharmonic functions. By this approach, we determine the critical growth rate of a non-decreasing function $\psi$ such that the sequence $\{\lambda_k\}_{k\in\Z}$ defined by $\lambda_k+\psi(\lambda_k)=k$ is sampling. |
Note: | Reproducció del document publicat a: https://doi.org/10.2307/3062132 |
It is part of: | Annals of Mathematics, 2002, vol. 155, num. 3, p. 789-806 |
URI: | https://hdl.handle.net/2445/164422 |
Related resource: | https://doi.org/10.2307/3062132 |
ISSN: | 0003-486X |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
506128.pdf | 194.27 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.