Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/164734| Title: | The constant of interpolation |
| Author: | Nicolau, Artur Ortega Cerdà, Joaquim Seip, Kristian |
| Keywords: | Funcions de variables complexes Interpolació (Matemàtica) Anàlisi funcional Àlgebres de Banach Functions of complex variables Interpolation Functional analysis Banach algebras |
| Issue Date: | 2004 |
| Publisher: | Mathematical Sciences Publishers (MSP) |
| Abstract: | We prove that a suitably adjusted version of Peter Jones' formula for interpolation in $H^\infty$ gives a sharp upper bound for what is known as the constant of interpolation. We show how this leads to precise and computable numerical bounds for this constant. |
| Note: | Reproducció del document publicat a: https://doi.org/10.2140/pjm.2004.213.389 |
| It is part of: | Pacific Journal of Mathematics, 2004, vol. 213, num. 2, p. 389-398 |
| URI: | https://hdl.handle.net/2445/164734 |
| Related resource: | https://doi.org/10.2140/pjm.2004.213.389 |
| ISSN: | 0030-8730 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 506580.pdf | 208.97 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
