Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/164787
Title: Non-thermal emission resulting from a supernova explosion inside an extragalactic jet
Author: Vieyro, F. L.
Bosch i Ramon, Valentí
Torres Albà, Núria
Keywords: Jets (Astrofísica)
Galàxies actives
Astrofísica
Astrophysical jets
Active galaxies
Astrophysics
Issue Date: 15-Feb-2019
Publisher: EDP Sciences
Abstract: Context. Core-collapse supernovae are found in galaxies with ongoing star-formation. In a starburst galaxy hosting an active galactic nucleus with a relativistic jet, supernovae can take place inside the jet. The collision of the supernova ejecta with the jet flow is expected to lead to the formation of an interaction region, in which particles can be accelerated and produce high-energy emission. Aims. We study the non-thermal radiation produced by electrons accelerated as a result of a supernova explosion inside the jet of an active galactic nucleus within a star-forming galaxy. Methods. We first analyzed the dynamical evolution of the supernova ejecta impacted by the jet. Then, we explored the parameter space using simple prescriptions for the observed gamma-ray lightcurve. Finally, the synchrotron and the inverse Compton spectral energy distributions for two types of sources, a radio galaxy and a powerful blazar, are computed. Results. For a radio galaxy, the interaction between a supernova and a jet of power ∼1043 − 1044 erg s−1 can produce apparent gamma-ray luminosities of ∼1042 − 1043 erg s−1, with an event duty cycle of supernova remnant interacting with the jet close to one for one galaxy. For a blazar with a powerful jet of ∼1046 erg s−1, the jet-supernova ejecta interaction could produce apparent gamma-ray luminosities of ∼1043 − 1044 erg s−1, but with a much lower duty cycle. Conclusions. The interaction of supernovae with misaligned jets of moderate power can be relatively frequent, and can result in steady gamma-ray emission potentially detectable for sources in the local universe. For powerful blazars much farther away, the emission would be steady as well, and it might be detectable under very efficient acceleration, but the events would be rather infrequent.
Note: Reproducció del document publicat a: https://doi.org/10.1051/0004-6361/201833319
It is part of: Astronomy & Astrophysics, 2019, vol. 622, num. A175
URI: http://hdl.handle.net/2445/164787
Related resource: https://doi.org/10.1051/0004-6361/201833319
ISSN: 0004-6361
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
690017.pdf2.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.