Please use this identifier to cite or link to this item:
Title: A hydrodynamics-informed, radiation model for HESS J0632 + 057 from radio to gamma-rays
Author: Barkov, M. V.
Bosch i Ramon, Valentí
Keywords: Raigs X
Raigs gamma
Estels binaris de raigs X
Gamma rays
X-ray binaries
Issue Date: 2018
Publisher: Royal Astronomical Society
Abstract: Relativistic hydrodynamical simulations of the eccentric gamma-ray binary HESS J0632+057 show that the energy of a putative pulsar wind should accumulate in the binary surroundings between periastron and apastron, being released by fast advection close to apastron. To assess whether this could lead to a maximum of the non-thermal emission before apastron, we derive simple prescriptions for the non-thermal energy content, the radiation efficiency, and the impact of energy losses on non-thermal particles, in the simulated hydrodynamical flow. These prescriptions are used to estimate the non-thermal emission in radio, X-rays, GeV, and TeV, from the shocked pulsar wind in a binary system simulated using a simplified 3-dimensional scheme for several orbital cycles. Lightcurves at different wavelengths are derived, together with synthetic radio images for different orbital phases. The dominant peak in the computed lightcurves is broad and appears close to, but before, apastron. This peak is followed by a quasiplateau shape, and a minor peak only in gamma rays right after periastron. The radio maps show ejection of radio blobs before apastron in the periastron-apastron direction. The results show that a scenario with a highly eccentric high-mass binary hosting a young pulsar can explain the general phenomenology of HESS J0632+057: despite its simplicity, the adopted approach yields predictions that are robust at a semi-quantitative level and consistent with multiwavelength observations.
Note: Reproducció del document publicat a:
It is part of: Monthly Notices of the Royal Astronomical Society, 2018, vol. 479, p. 1320
Related resource:
ISSN: 0035-8711
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
682006.pdf2.66 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.