Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/164899
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMontoro López, M. Eulàlia-
dc.contributor.authorFernàndez Zacarı́as, Héctor Pablo-
dc.date.accessioned2020-06-09T08:19:33Z-
dc.date.available2020-06-09T08:19:33Z-
dc.date.issued2020-01-18-
dc.identifier.urihttps://hdl.handle.net/2445/164899-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: M. Eulàlia Montoro Lópezca
dc.description.abstract[en] Matrix canonical forms (with respect to similarity) provide exemplars for each similarity class, and let us study in a simpler way some properties of the square matrices. We will focus on the Weyr canonical form. We will see that although it’s the best known, the Jordan form it’s not always the most suitable form for the study of a given matrix. In general, we can’t say there is a best canonical form, it will depend on each case. We will see differents proofs of the existence and uniqueness of the canonical forms, how to calculate them, the relationships between them, and some applications.ca
dc.format.extent50 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Héctor Pablo Fernàndez Zacarı́as, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationFormes (Matemàtica)ca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationMatrius (Matemàtica)ca
dc.subject.classificationÀlgebres de Jordanca
dc.subject.otherForms (Mathematics)en
dc.subject.otherBachelor's theses-
dc.subject.otherMatricesen
dc.subject.otherJordan algebrasen
dc.titleForma canònica de Weyr i aplicacionsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
164899.pdfMemòria647.9 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons