Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/165518
Title: | Grup de trenes i el teorema d’Alexander |
Author: | Perea Navarro, Anna |
Director/Tutor: | Gutiérrez Marín, Javier J. |
Keywords: | Topologia de baixa dimensió Treballs de fi de grau Teoria de nusos Grups infinits Python (Llenguatge de programació) Algorismes computacionals Low-dimensional topology Bachelor's theses Knot theory Infinite groups Python (Computer program language) Computer algorithms |
Issue Date: | 19-Jan-2020 |
Abstract: | [en] Braid theory is a an important tool in low dimensional topology. In this work we study the braid group and see how it relates to knot theory. The main objective is to formulate and prove Alexander’s theorem stating that any knot, or more generally any link, can be obtained as the closure of a braid. We give two constructive proofs, one based on Alexander’s original proof and the other one following the Yamada–Vogel’s algorithm. Moreover, we provide the code of of an implementation of the latter algorithm, written in Python. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Javier J. Gutiérrez Marín |
URI: | https://hdl.handle.net/2445/165518 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
165518.pdf | Memòria | 2.06 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License