Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/166207
Full metadata record
DC FieldValueLanguage
dc.contributor.authorViñes Solana, Francesc-
dc.contributor.authorLamiel Garcia, Josep Oriol-
dc.contributor.authorIllas i Riera, Francesc-
dc.contributor.authorBromley, Stefan Thomas-
dc.date.accessioned2020-06-18T08:05:40Z-
dc.date.available2020-06-18T08:05:40Z-
dc.date.issued2017-07-28-
dc.identifier.issn2040-3364-
dc.identifier.urihttp://hdl.handle.net/2445/166207-
dc.description.abstractWe report on an extensive survey of (ZnO)(N) nanostructures ranging from bottom-up generated nanoclusters to top-down nanoparticles cuts from bulk polymorphs. The obtained results enable us to follow the energetic preferences of structure and polymorphism in (ZnO)(N) systems with N varying between 10-1026. This size range encompasses small nanoclusters with 10s of atoms and nanoparticles with 100s of atoms, which we also compare with appropriate bulk limits. In all cases the nanostructures and bulk systems are optimized using accurate all-electron, relativistic density functional theory based calculations with numeric atom centered orbital basis sets. Specifically, sets of five families of (ZnO)(N) species are considered: single-layered and multi-layered nanocages, and bulk cut nanoparticles from the sodalite (SOD), body centered tetragonal (BCT), and wurtzite (WZ) ZnO polymorphs. Using suitable fits to interpolate and extrapolate these data allows us to assess the size-dependent energetic stabilities of each family. With increasing size our results indicate a progressive change in energetic stability from single-layered to multi-layered cage-like nanoclusters. For nanoparticles of around 2.6 nm diameter we identify a transitional region where multi-layered cages, SOD, and BCT nanostructures are very similar in energetic stability. This transition size also marks the size regime at which bottom-up nanoclusters give way to top-down bulk-cut nanoparticles. Eventually, a final crossover is found where the most stable WZ-ZnO polymorph begins to energetically dominate at N similar to 2200. This size corresponds to an approximate nanoparticle diameter of 4.7 nm, in line with experiments reporting the observation of wurtzite crystallinity in isolated ligand-free ZnO nanoparticles of 4-5 nm size or larger.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherRoyal Society of Chemistry-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1039/c7nr02818k-
dc.relation.ispartofNanoscale, 2017, vol. 9, num. 28, p. 10067-10074-
dc.relation.urihttps://doi.org/10.1039/c7nr02818k-
dc.rights(c) Viñes Solana, Francesc et al., 2017-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationTeoria del funcional de densitat-
dc.subject.classificationNanopartícules-
dc.subject.classificationÒxid de zinc-
dc.subject.otherDensity functionals-
dc.subject.otherNanoparticles-
dc.subject.otherZinc oxide-
dc.titleSize dependent structural and polymorphic transitions in ZnO: from nanocluster to bulk-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec678170-
dc.date.updated2020-06-18T08:05:40Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
678170.pdf1.45 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.