Por favor, use este identificador para citar o enlazar este documento: https://hdl.handle.net/2445/168539
Título: An arithmetic Bernstein-Kushnirenko inequality
Autor: Martínez, César
Sombra, Martín
Materia: Geometria algebraica
Varietats tòriques
Funcions convexes
Algebraic geometry
Toric varieties
Convex functions
Fecha de publicación: 6-sep-2018
Publicado por: Springer Verlag
Resumen: We present an upper bound for the height of the isolated zeros in the torus of a system of Laurent polynomials over an adelic field satisfying the product formula. This upper bound is expressed in terms of the mixed integrals of the local roof functions associated to the chosen height function and to the system of Laurent polynomials. We also show that this bound is close to optimal in some families of examples. This result is an arithmetic analogue of the classical Bern¿tein-Ku¿nirenko theorem. Its proof is based on arithmetic intersection theory on toric varieties.
Nota: Versió postprint del document publicat a: https://doi.org/10.1007/s00209-018-2107-0
Es parte de: Mathematische Zeitschrift, 2018, vol. 291, p. 1211-1244
URI: https://hdl.handle.net/2445/168539
Recurso relacionado: https://doi.org/10.1007/s00209-018-2107-0
ISSN: 0025-5874
Aparece en las colecciones:Articles publicats en revistes (Matemàtiques i Informàtica)

Archivos de este documento:
Archivo Descripción DimensionesFormato 
702667.pdf485.8 kBAdobe PDFMostrar/Abrir


Este documento tiene todos los derechos reservados