Please use this identifier to cite or link to this item:
Title: Galois representations, embedding problems and modular forms
Author: Crespo Vicente, Teresa
Keywords: Teoria de Galois
Galois theory
Issue Date: 1997
Publisher: Universitat de Barcelona
Abstract: To an odd irreducible 2-dimensional complex linear representation of the absolute Galois group of the field Q of rational numbers, a modular form of weight 1 is associated (modulo Artin's conjecture on the L-series of the representation in the icosahedral case). In addition, linear liftings of 2-dimensional projective Galois representations are related to solutions of certain Galois embedding problems. In this paper we present some recent results on the existence of liftings of projective representations and on the explicit resolution of embedding problems associated to orthogonal Galois representations, and explain how these results can be used to construct modular forms.
Note: Reproducció del document publicat a:
It is part of: Collectanea Mathematica, 1997, vol. 48, núm. 1-2, p. 63-83
ISSN: 0010-0757
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
128520.pdf185.49 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.