Please use this identifier to cite or link to this item:
Title: Modulating photostability and mitochondria selectivity in far-red/NIR emitting coumarin fluorophores through replacement of pyridinium by pyrimidinium
Author: Rovira, Anna
Pujals, Miriam
Gandioso, Albert
López-Corrales, Marta
Bosch, Manel
Marchán Sancho, Vicente
Keywords: Mitocondris
Issue Date: 2-Apr-2020
Publisher: American Chemical Society
Abstract: Mitochondrial dysfunction has been associated with several human pathological conditions, including cancer, aging, and neurodegenerative diseases. Thus, the availability of selective fluorescent probes for mitochondria could play an important role in the future for monitoring cellular functions and disease progression. In this work, we have studied how the photophysical properties and subcellular accumulation of nonconventional coumarin-based COUPY fluorophores can be fine-tuned through replacement of the para-pyridinium moiety with several heterocycles. Among them, ortho,para-pyrimidinium substitution provided novel fluorophores with suitable photophysical properties for bioimaging applications, including emission in the far-red to NIR region, large Stokes' shifts, and high photostability. Furthermore, the compounds exhibited excellent cell membrane permeability in living cells and a higher selectivity for mitochondria compared with the parent COUPY fluorophores. Overall, these results provided useful insights into the development of novel mitochondria-targeted fluorescent probes based on small organic molecules, since higher selectivity for this organelle can be achieved through the replacement of conventional N-alkylated pyridinium moieties by the corresponding N-alkylated-ortho,para-pyrimidinium counterparts.
Note: Versió postprint del document publicat a:
It is part of: Journal of Organic Chemistry, 2020, vol. 85, num. 9, p. 6086-6097
Related resource:
ISSN: 0022-3263
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
700563.pdf928.98 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.