Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/170688
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Guitart Morales, Xavier | - |
dc.contributor.author | Arnalot Farràs, Joan | - |
dc.date.accessioned | 2020-09-17T07:26:57Z | - |
dc.date.available | 2020-09-17T07:26:57Z | - |
dc.date.issued | 2020-07-02 | - |
dc.identifier.uri | https://hdl.handle.net/2445/170688 | - |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Xavier Guitart Morales, | ca |
dc.description.abstract | [en] Hasse-Minkowski theorem states that a quadratic form has a non-trivial solution in $\mathbb{Q}$ if and only if there is a non-trivial solution in every completition. In this work we will study these completitions, their properties and their solutions in polynomials, the proof of the theorem and some applications and counterexamples in other polynomials than quadratic forms. | ca |
dc.format.extent | 54 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | cat | ca |
dc.rights | cc-by-nc-nd (c) Joan Arnalot Farràs, 2020 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | - |
dc.subject.classification | Formes quadràtiques | ca |
dc.subject.classification | Treballs de fi de grau | - |
dc.subject.classification | Nombres p-àdics | ca |
dc.subject.classification | Anàlisi diofàntica | ca |
dc.subject.other | Quadratic forms | en |
dc.subject.other | Bachelor's theses | - |
dc.subject.other | p-adic numbers | en |
dc.subject.other | Diophantine analysis | en |
dc.title | El Teorema de Hasse-Minkowski | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
170688.pdf | Memòria | 742.72 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License