Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/171413
Title: | Visual recognition of guitar chords using neural networks |
Author: | Mitjans Coma, Albert |
Director/Tutor: | Carnicer González, Arturo |
Keywords: | Música per a guitarra Xarxes neuronals (Informàtica) Treballs de fi de grau Guitar music Neural networks (Computer science) Bachelor's theses |
Issue Date: | Jun-2020 |
Abstract: | In this paper, we use deep learning to study high-level features for guitar chord detection. In particular, the goal of this project is to build a neural network capable of recognizing finger patterns on the frets of a guitar. Given an input image, the network is able to identify fingers, frets, strings and the corresponding chord. Using a 2-stack Hourglass network for the detection and applying a post-processing algorithm to its corresponding output heatmaps, a 97% accuracy on the detection of chords of 205 different images is obtained |
Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2020, Tutor: Artur Carnicer |
URI: | https://hdl.handle.net/2445/171413 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MITJANS COMA ALBERT_1338767_assignsubmission_file_TFG-Mitjans-Coma-Albert.pdf | 14.87 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License