Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/172000
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlonso, Pino-
dc.contributor.authorCalvo, Ana-
dc.contributor.authorLazaro, Luisa-
dc.contributor.authorMartínez Zalacaín, Ignacio-
dc.contributor.authorMenchón Magriñá, José Manuel-
dc.contributor.authorMorer Liñán, Astrid-
dc.contributor.authorSoriano Mas, Carles-
dc.contributor.authorENIGMA-OCD Working-Group-
dc.date.accessioned2020-11-12T14:29:40Z-
dc.date.available2020-11-12T14:29:40Z-
dc.date.issued2019-01-
dc.identifier.issn1662-5196-
dc.identifier.urihttp://hdl.handle.net/2445/172000-
dc.description.abstractObjective: Brain imaging communities focusing on different diseases have increasingly started to collaborate and to pool data to perform well-powered meta- and mega-analyses. Some methodologists claim that a one-stage individual-participant data (IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis, since more detailed computations can be performed in a mega-analysis. Before definitive conclusions regarding the performance of either method can be drawn, it is necessary to critically evaluate the methodology of, and results obtained by, meta- and mega-analyses. Methods: Here, we compare the inverse variance weighted random-effect meta-analysis model with a multiple linear regression mega-analysis model, as well as with a linear mixed-effects random-intercept mega-analysis model, using data from 38 cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the effect sizes and standard errors, and the fit of the models, to evaluate the performance of the different methods. Results: The mega-analytical models showed lower standard errors and narrower confidence intervals than the meta-analysis. Similar standard errors and confidence intervals were found for the linear regression and linear mixed-effects random-intercept models. Moreover, the linear mixed-effects random-intercept models showed better fit indices compared to linear regression mega-analytical models. Conclusions: Our findings indicate that results obtained by meta- and mega-analysis differ, in favor of the latter. In multi-center studies with a moderate amount of variation between cohorts, a linear mixed-effects random-intercept mega-analytical framework appears to be the better approach to investigate structural neuroimaging data-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherFrontiers Media-
dc.relation.isformatofReproducció del document publicat a:-
dc.relation.ispartofFrontiers in Neuroinformatics, 2019, vol. 12-
dc.rightscc-by (c) Alonso, Pino et al., 2019-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Ciències Clíniques)-
dc.subject.classificationNeurosi obsessiva-
dc.subject.classificationImpulsos (Psicologia)-
dc.subject.otherObsessive-compulsive disorder-
dc.subject.otherImpulse-
dc.titleAn Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec687082-
dc.date.updated2020-11-12T14:29:40Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid30670959-
Appears in Collections:Articles publicats en revistes (Medicina)
Articles publicats en revistes (Ciències Clíniques)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
687082.pdf228.86 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons