Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/172430
Títol: aPRIDIT unsupervised classification with asymmetric valuation of variable discriminatory worth
Autor: Golden, Linda L.
Brockett, Patrick L.
Guillén, Montserrat
Manika, Danae
Matèria: Classificació
Previsió
Conducta (Psicologia)
Classification
Forecasting
Human behavior
Data de publicació: 27-set-2020
Publicat per: Taylor and Francis
Resum: Sometimes one needs to classify individuals into groups, but there is no available grouping information due to social desirability bias in reporting behavior like unethical or dishonest intentions or unlawful actions. Assessing hard-to-detect behaviors is useful; however it is methodologically difficult because people are unlikely to self-disclose bad actions. This paper presents an unsupervised classification methodology utilizing ordinal categorical predictor variables. It allows for classification, individual respondent ranking, and grouping without access to a dependent group indicator variable. The methodology also measures predictor variable worth (for determining target behavior group membership) at a predictor variable category-by-category level, so different variable response categories can contain different amounts of information about classification. It is asymmetric in that a "0" on a binary predictor does not have a similar impact toward signaling "membership in the target group" as a "1" has for signaling "membership in the non-target group." The methodology is illustrated by identifying Spanish consumers filing fraudulent insurance claims. A second illustration classifies Portuguese high school student's propensity to alcohol abuse. Results show the methodology is useful when it is difficult to get dependent variable information, and is useful for deciding which predictor variables and categorical response options are most important.
Nota: Reproducció del document publicat a: https://doi.org/10.1080/00273171.2019.1665979
És part de: Multivariate Behavioral Research, 2020, vol. 55, num. 5, p. 685-703
URI: https://hdl.handle.net/2445/172430
Recurs relacionat: https://doi.org/10.1080/00273171.2019.1665979
ISSN: 0027-3171
Apareix en les col·leccions:Articles publicats en revistes (Econometria, Estadística i Economia Aplicada)

Fitxers d'aquest document:
Fitxer Descripció DimensionsFormat 
699710.pdf1.63 MBAdobe PDFMostrar/Obrir


Aquest document està subjecte a una Llicència Creative Commons Creative Commons