Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/172530
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBenini, Anna Miriam-
dc.contributor.authorFagella Rabionet, Núria-
dc.date.accessioned2020-12-03T10:19:51Z-
dc.date.available2020-12-03T10:19:51Z-
dc.date.issued2020-06-01-
dc.identifier.issn0022-2518-
dc.identifier.urihttps://hdl.handle.net/2445/172530-
dc.description.abstractLet $f$ be a map with bounded set of singular values for which periodic dynamic rays exist and land. We prove that each non-repelling cycle is associated to a singular orbit which cannot accumulate on any other non-repelling cycle. When $f$ has finitely many singular values this implies a refinement of the Fatou-Shishikura inequality.-
dc.format.extent16 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherIndiana University-
dc.relation.isformatofVersió preprint del document publicat a: https://doi.org/10.1512/iumj.2020.69.8000-
dc.relation.ispartofIndiana University Mathematics Journal, 2020, vol. 69, p. 1543-1558-
dc.relation.urihttps://doi.org/10.1512/iumj.2020.69.8000-
dc.rights(c) Indiana University Mathematics Journal, 2020-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationSistemes dinàmics diferenciables-
dc.subject.classificationFuncions de variables complexes-
dc.subject.classificationEquacions funcionals-
dc.subject.otherDifferentiable dynamical systems-
dc.subject.otherFunctions of complex variables-
dc.subject.otherFunctional equations-
dc.titleSingular values and non-repelling cycles for entire transcendental maps-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/submittedVersion-
dc.identifier.idgrec683533-
dc.date.updated2020-12-03T10:19:51Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/703269/EU//CoTraDy-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
683533.pdf307.75 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.