Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/173510
Title: MicroRNA Alterations in a Tg501 Mouse Model of Prion Disease
Author: Toivonen, Janne M.
Sanz Rubio, David
López Pérez, Óscar
Marín Moreno, Alba
Bolea, Rosa
Osta, Rosario
Badiola, Juan José
Zaragoza, Pilar
Espinosa, Juan Carlos
Torres, Juan Maria
Martín Burriel, Inmaculada
Keywords: Malalties per prions
Micro RNAs
Marcadors bioquímics
Prion diseases
MicroRNAs
Biochemical markers
Issue Date: 1-Jun-2020
Publisher: MDPI
Abstract: MicroRNAs (miRNAs) may contribute to the development and pathology of many neurodegenerative diseases, including prion diseases. They are also promising biomarker candidates due to their stability in body fluids. We investigated miRNA alterations in a Tg501 mouse model of prion diseases that expresses a transgene encoding the goat prion protein (PRNP). Tg501 mice intracranially inoculated with mouse-adapted goat scrapie were compared with age-matched, mock inoculated controls in preclinical and clinical stages. Small RNA sequencing from the cervical spinal cord indicated that miR-223-3p, miR-151-3p, and miR-144-5p were dysregulated in scrapie-inoculated animals before the onset of symptoms. In clinical-stage animals, 23 significant miRNA alterations were found. These miRNAs were predicted to modify the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including prion disease, extracellular matrix interactions, glutaminergic synapse, axon guidance, and transforming growth factor-beta signaling. MicroRNAs miR-146a-5p (up in cervical spinal cord) and miR-342-3p (down in cervical spinal cord, cerebellum and plasma), both indicated in neurodegenerative diseases earlier, were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Minimal changes observed before the disease onset suggests that most miRNA alterations observed here are driven by advanced prion-associated pathology, possibly limiting their use as diagnostic markers. However, the results encourage further mechanistic studies on miRNA-regulated pathways involved in these neurodegenerative conditions.
Note: Reproducció del document publicat a: https://doi.org/10.3390/biom10060908
It is part of: Biomolecules, 2020, vol. 10, num. 6
URI: http://hdl.handle.net/2445/173510
Related resource: https://doi.org/10.3390/biom10060908
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
ToivonenJM.pdf7.98 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons