Please use this identifier to cite or link to this item:
Title: Effect of BDNF Val66Met on hippocampal subfields volumes and compensatory interaction with APOE-ε4 in middle-age cognitively unimpaired individuals from the ALFA study
Author: Vilor Tejedor, Natalia
Operto, Grégory
Evans, Tavia E.
Falcon, Carles
Crous Bou, Marta
Minguillón, Carolina
Cacciaglia, Raffaele
Milà Alomà, Marta
Grau Rivera, Oriol
Suárez Calvet, Marc
Garrido Martín, Diego, 1992-
Morán, Sebastián
Esteller, Manel
Adams, Hieab H.
Molinuevo, José Luis
Guigó, Roderic
Gispert, Juan Domingo
ALFA Study
Keywords: Malalties neurodegeneratives
Hipocamp (Cervell)
Neurodegenerative Diseases
Hippocampus (Brain)
Issue Date: Nov-2020
Publisher: Springer Verlag
Abstract: Background: Current evidence supports the involvement of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, and the ε4 allele of APOE gene in hippocampal-dependent functions. Previous studies on the association of Val66Met with whole hippocampal volume included patients of a variety of disorders. However, it remains to be elucidated whether there is an impact of BDNF Val66Met polymorphism on the volumes of the hippocampal subfield volumes (HSv) in cognitively unimpaired (CU) individuals, and the interactive effect with the APOE-ε4 status. Methods: BDNF Val66Met and APOE genotypes were determined in a sample of 430 CU late/middle-aged participants from the ALFA study (ALzheimer and FAmilies). Participants underwent a brain 3D-T1-weighted MRI scan, and volumes of the HSv were determined using Freesurfer (v6.0). The effects of the BDNF Val66Met genotype on the HSv were assessed using general linear models corrected by age, gender, education, number of APOE-ε4 alleles and total intracranial volume. We also investigated whether the association between APOE-ε4 allele and HSv were modified by BDNF Val66Met genotypes. Results: BDNF Val66Met carriers showed larger bilateral volumes of the subiculum subfield. In addition, HSv reductions associated with APOE-ε4 allele were significantly moderated by BDNF Val66Met status. BDNF Met carriers who were also APOE-ε4 homozygous showed patterns of higher HSv than BDNF Val carriers. Conclusion: To our knowledge, the present study is the first to show that carrying the BDNF Val66Met polymorphisms partially compensates the decreased on HSv associated with APOE-ε4 in middle-age cognitively unimpaired individuals.
Note: Reproducció del document publicat a:
It is part of: Brain Structure and Function, 2020, vol. 225, p. 2331-2345
Related resource:
ISSN: 1863-2653
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
704182.pdf2.43 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons