Please use this identifier to cite or link to this item:
Title: A converse to the Schwarz lemma for planar harmonic maps
Author: Fredrik Brevig, Ole
Ortega Cerdà, Joaquim
Seip, Kristian
Keywords: Espais de Hardy
Anàlisi harmònica
Hardy spaces
Harmonic analysis
Issue Date: 6-Jan-2021
Publisher: Elsevier
Abstract: A sharp version of a recent inequality of Kovalev and Yang on the ratio of the $(H^1)^\ast$ and $H^4$ norms for certain polynomials is obtained. The inequality is applied to establish a sharp and tractable sufficient condition for the Wirtinger derivatives at the origin for harmonic self-maps of the unit disc which fix the origin.
Note: Versió postprint del document publicat a:
It is part of: Journal of Mathematical Analysis and Applications, 2021, vol. 497, num. 2
Related resource:
ISSN: 0022-247X
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
705447.pdf279.65 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons