Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/173610| Title: | A converse to the Schwarz lemma for planar harmonic maps |
| Author: | Fredrik Brevig, Ole Ortega Cerdà, Joaquim Seip, Kristian |
| Keywords: | Espais de Hardy Anàlisi harmònica Hardy spaces Harmonic analysis |
| Issue Date: | 6-Jan-2021 |
| Publisher: | Elsevier |
| Abstract: | A sharp version of a recent inequality of Kovalev and Yang on the ratio of the $(H^1)^\ast$ and $H^4$ norms for certain polynomials is obtained. The inequality is applied to establish a sharp and tractable sufficient condition for the Wirtinger derivatives at the origin for harmonic self-maps of the unit disc which fix the origin. |
| Note: | Versió postprint del document publicat a: https://doi.org/10.1016/j.jmaa.2020.124908 |
| It is part of: | Journal of Mathematical Analysis and Applications, 2021, vol. 497, num. 2 |
| URI: | https://hdl.handle.net/2445/173610 |
| Related resource: | https://doi.org/10.1016/j.jmaa.2020.124908 |
| ISSN: | 0022-247X |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 705447.pdf | 279.65 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
