Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/175111
Title: | A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients |
Author: | Andrews, L. M. Hesselink, D. A. Schaik, R. H. N. Gelder, T. Fijter, J. W. Lloberas Blanch, Núria Elens, L. Moes, D. J. A. R. Winter, B. C. M. |
Keywords: | Farmacocinètica Trasplantament renal Immunologia Pharmacokinetics Kidney transplantation Immunology |
Issue Date: | 17-Jan-2019 |
Publisher: | Wiley |
Abstract: | Aims: The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to develop a clinical tool for selecting the best starting dose for each patient. Methods: Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic analysis was conducted using nonlinear mixed-effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. Results: A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described using a two-compartment model. The mean absorption rate was 3.6 h-1 , clearance was 23.0 l h-1 (39% interindividual variability, IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 expressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance (80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to individualize the tacrolimus starting dose: [Formula: see text] Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added value of the starting dose model. Conclusions: For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These covariates explained 30% of the variability in CL/F. The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation. |
Note: | Reproducció del document publicat a: https://doi.org/10.1111/bcp.13838 |
It is part of: | British Journal of Clinical Pharmacology, 2019, vol. 85, num. 3, p. 601-615 |
URI: | https://hdl.handle.net/2445/175111 |
Related resource: | https://doi.org/10.1111/bcp.13838 |
Appears in Collections: | Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
bcp.13838.pdf | 1.4 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License