Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/175335
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWijsen, Nicolas-
dc.contributor.authorSamara, Evangelia-
dc.contributor.authorAran i Sensat, Maria dels Àngels-
dc.contributor.authorLario, David-
dc.contributor.authorPomoell, Jens-
dc.contributor.authorPoedts, Stefaan-
dc.date.accessioned2021-03-18T14:50:49Z-
dc.date.available2021-03-18T14:50:49Z-
dc.date.issued2021-02-19-
dc.identifier.issn2041-8205-
dc.identifier.urihttps://hdl.handle.net/2445/175335-
dc.description.abstractSolar wind stream interaction regions (SIRs) are often characterized by energetic ion enhancements. The mechanisms accelerating these particles, as well as the locations where the acceleration occurs, remain debated. Here, we report the findings of a simulation of a SIR event observed by Parker Solar Probe at ~0.56 au and the Solar Terrestrial Relations Observatory-Ahead at ~0.95 au in 2019 September when both spacecraft were approximately radially aligned with the Sun. The simulation reproduces the solar wind configuration and the energetic particle enhancements observed by both spacecraft. Our results show that the energetic particles are produced at the compression waves associated with the SIR and that the suprathermal tail of the solar wind is a good candidate to provide the seed population for particle acceleration. The simulation confirms that the acceleration process does not require shock waves and can already commence within Earth's orbit, with an energy dependence on the precise location where particles are accelerated. The three-dimensional configuration of the solar wind streams strongly modulates the energetic particle distributions, illustrating the necessity of advanced models to understand these particle events.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherInstitute of Physics (IOP)-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3847/2041-8213/abe1cb-
dc.relation.ispartofAstrophysical Journal Letters, 2021, vol. 908, num. 2-
dc.relation.urihttps://doi.org/10.3847/2041-8213/abe1cb-
dc.rights(c) American Astronomical Society, 2021-
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationVent solar-
dc.subject.classificationAcceleradors de partícules-
dc.subject.otherSolar wind-
dc.subject.otherParticle accelerators-
dc.titleA Self-consistent simulation of proton acceleration and transport near a high-speed solar wind stream-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec707237-
dc.date.updated2021-03-18T14:50:49Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/870405/EU//EUHFORIA_2.0-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))
Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
707237.pdf9.84 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.