Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/17583
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarreras, Josepcat
dc.contributor.authorBonafos, Carolinecat
dc.contributor.authorMontserrat i Martí, Josepcat
dc.contributor.authorDomínguez, Carlos (Domínguez Horna)cat
dc.contributor.authorAlbiol i Cobos, Jordicat
dc.contributor.authorGarrido Fernández, Blascat
dc.date.accessioned2011-04-12T08:15:27Z-
dc.date.available2011-04-12T08:15:27Z-
dc.date.issued2008-
dc.identifier.issn0957-4484-
dc.identifier.urihttp://hdl.handle.net/2445/17583-
dc.description.abstractWe describe high-speed control of light from silicon nanocrystals under electrical excitation. The nanocrystals are fabricated by the ion implantation of Si+ in the 15?nm thick gate oxide of a field effect transistor at 6.5?keV. A characteristic read-peaked electroluminescence is obtained either by DC or AC gate excitation. However, AC gate excitation is found to have a frequency response that is limited by the radiative lifetimes of silicon nanocrystals, which makes impossible the direct modulation of light beyond 100?kb?s?1 rates. As a solution, we demonstrate that combined DC gate excitation along with an AC channel hot electron injection of electrons into the nanocrystals may be used to obtain a 100% deep modulation at rates of 200?Mb?s?1 and low modulating voltages. This approach may find applications in biological sensing integrated into CMOS, single-photon emitters or direct encoding of information into light from Si-nc doped with erbium systems, which exhibit net optical gain. In this respect, the main advantage compared to conventional electro-optical modulators based on plasma dispersion effects is the low power consumption (104 times smaller) and thus the inherent large scale of integration. A detailed electrical characterization is also given. An Si/SiO2 barrier change from ?b = 3.2 to 4.2?eV is found while the injection mechanism is changed from Fowler?Nordheim to channel hot electron, which is a clear signature of nanocrystal charging and subsequent electroluminescence quenching.-
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengeng
dc.publisherIOP Publishing Ltd.eng
dc.relation.isformatofVersió postprint del document publicat a http://dx.doi.org/10.1088/0957-4484/19/20/205201cat
dc.relation.ispartofNanotechnology, 2008, vol. 19, núm. 20, p. 205201-1-205201-9-
dc.relation.urihttp://dx.doi.org/10.1088/0957-4484/19/20/205201-
dc.rights(c) IOP Publishing, 2009-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationElectrònicacat
dc.subject.classificationMatèria condensadacat
dc.subject.classificationNanocristalls semiconductorscat
dc.subject.otherElectronicseng
dc.subject.otherCondensed mattereng
dc.subject.otherSemiconductor nanocrystalseng
dc.titleAuger quenching-based modulation of electroluminescence from ion-implanted silicon nanocrystalseng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec585158-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/224312/EU//HELIOS-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
585158.pdf2.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.