Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/176007
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCasanovas Ruiz-Fornells, Enrique-
dc.contributor.authorBerdugo Parada, Sandra-
dc.date.accessioned2021-04-09T07:55:07Z-
dc.date.available2021-04-09T07:55:07Z-
dc.date.issued2020-06-19-
dc.identifier.urihttp://hdl.handle.net/2445/176007-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Enrique Casanovas Ruiz-Fornellsca
dc.description.abstract[en] The system of Peano Arithmetic is a system more than enough for proving almost all statements of the natural numbers. We will work with a version of this system adapted to first-order logic, denoted as PA. The aim of this work will be showing that there is no equivalent finitely axiomatizable system. In order to do this, we will introduce some concepts about the complexity of formulas and codification of sequences to prove Ryll-Nardzewski’s theorem, which states that there is no consistent extension of PA finitely axiomatized.ca
dc.format.extent51 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Sandra Berdugo Parada, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationTeoria de modelsca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationTeoria de la provaca
dc.subject.otherModel theoryen
dc.subject.otherBachelor's theses-
dc.subject.otherProof theoryen
dc.titleNon-finite axiomatizability of first-order Peano Arithmeticca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
176007.pdfMemòria513.82 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons