Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/176310
Title: | RiskLogitboost Regression for Rare Events in Binary Response: An Econometric Approach |
Author: | Pesantez-Narvaez, Jessica Guillén, Montserrat Alcañiz, Manuela |
Keywords: | Anàlisi de regressió Teoria de l'estimació Processament de dades Sistema binari (Matemàtica) Regression analysis Estimation theory Data processing Binary system (Mathematics) |
Issue Date: | Mar-2021 |
Publisher: | MDPI |
Abstract: | A boosting-based machine learning algorithm is presented to model a binary response with large imbalance, i.e., a rare event. The new method (i) reduces the prediction error of the rare class, and (ii) approximates an econometric model that allows interpretability. RiskLogitboost regression includes a weighting mechanism that oversamples or undersamples observations according to their misclassification likelihood and a generalized least squares bias correction strategy to reduce the prediction error. An illustration using a real French third-party liability motor insurance data set is presented. The results show that RiskLogitboost regression improves the rate of detection of rare events compared to some boosting-based and tree-based algorithms and some existing methods designed to treat imbalanced responses. |
Note: | Reproducció del document publicat a: https://doi.org/10.3390/math9050579 |
It is part of: | Mathematics, 2021, vol. 9, num. 579, p. 1-21 |
URI: | https://hdl.handle.net/2445/176310 |
Related resource: | https://doi.org/10.3390/math9050579 |
ISSN: | 2227-7390 |
Appears in Collections: | Articles publicats en revistes (Econometria, Estadística i Economia Aplicada) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
710731.pdf | 4.43 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License