Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/176651
Title: Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis
Author: Ligero, Marta
Jordi Ollero, Olivia
Bernatowicz, Kinga
García Ruiz, Alonso
Delgado Muñoz, Eric
Leiva, David
Mast, Richard
Suarez, Cristina
Sala Llonch, Roser
Calvo, Nahum
Escobar, Manuel
Navarro Martin, Arturo
Villacampa, Guillermo
Dienstmann, Rodrigo
Pérez López, Raquel
Keywords: Càncer
Metàstasi
Marcadors bioquímics
Tomografia
Cancer
Metastasis
Biochemical markers
Tomography
Issue Date: 9-Sep-2020
Publisher: Springer Verlag
Abstract: Objective: To identify CT-acquisition parameters accounting for radiomics variability and to develop a post-acquisition CTimage correction method to reduce variability and improve radiomics classification in both phantom and clinical applications. Methods: CT-acquisition protocols were prospectively tested in a phantom. The multi-centric retrospective clinical study included CT scans of patients with colorectal/renal cancer liver metastases. Ninety-three radiomics features of first order and texture were extracted. Intraclass correlation coefficients (ICCs) between CT-acquisition protocols were evaluated to define sources of variability. Voxel size, ComBat, and singular value decomposition (SVD) compensation methods were explored for reducing the radiomics variability. The number of robust features was compared before and after correction using two-proportion z test. The radiomics classification accuracy (K-means purity) was assessed before and after ComBat- and SVD-based correction. Results: Fifty-three acquisition protocols in 13 tissue densities were analyzed. Ninety-seven liver metastases from 43 patients with CT from two vendors were included. Pixel size, reconstruction slice spacing, convolution kernel, and acquisition slice thickness are relevant sources of radiomics variability with a percentage of robust features lower than 80%. Resampling to isometric voxels increased the number of robust features when images were acquired with different pixel sizes (p < 0.05). SVD-based for thickness correction and ComBat correction for thickness and combined thickness-kernel increased the number of reproducible features (p < 0.05). ComBat showed the highest improvement of radiomics-based classification in both the phantom and clinical applications (K-means purity 65.98 vs 73.20). Conclusion: CT-image post-acquisition processing and radiomics normalization by means of batch effect correction allow for standardization of large-scale data analysis and improve the classification accuracy
Note: Reproducció del document publicat a: https://doi.org/10.1007/s00429-019-02009-1
It is part of: European Radiology, 2020, vol. 31, p. 1460-1470
URI: http://hdl.handle.net/2445/176651
Related resource: https://doi.org/10.1007/s00429-019-02009-1
ISSN: 0938-7994
Appears in Collections:Articles publicats en revistes (Biomedicina)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
710404.pdf2.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons