Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/176837
Title: Commentary: The Scavenger Receptor SSc5D Physically Interacts with Bacteria through the SRCR-Containing N-Terminal Domain
Author: Lozano Soto, Francisco
Martínez-Florensa, Mario
Keywords: Cisteïna
Bactriana
Cysteine
Bactria
Issue Date: 28-Mar-2017
Publisher: Frontiers Media
Abstract: The recently published article by Bessa Pereira et al. reports that the human SSc5D receptor physically interacts with some bacterial species (1), thus basically confirming previous available information on its mouse homolog (S5D-SRCRB) (2). The interspecies conservation of such a basic innate immune function (bacterial binding) has been noticed for other members of the scavenger receptor cysteine-rich superfamily (SRCR-SF) (e.g., human Spα and its mouse homolog AIM/Api6/CD5L) (3, 4). This advocates for its functional physiological relevance in innate defense of body surfaces as it has been proposed for the urogenital tract (5). A substantive part of the work by Bessa Pereira et al. is also devoted to explore putative qualitative and/or quantitative differences on the bacterial-binding properties of SSc5D with other human SRCR-SF proteins, namely, CD5, Spα, and CD6 by using conventional protein-bacteria binding assays and surface plasmon resonance-based assays. They were chosen based on previously reported information showing that Spα (4) and CD6 (6-8) but not CD5 (9) exhibit broad bacterial-binding properties. While the authors confirmed the work on Spα and CD5, they were unable to replicate that on CD6. Exclusively based on a single experimental evidence, the authors cast doubt on the well-documented bacterial-binding properties of CD6 (6-8). These properties were unveiled by using a recombinant soluble form of human CD6 (rshCD6) encompassing from D25 to M400 and, indistinctly, produced in different mammalian cell expression systems (NSO, HEK293-EBNA, and CHO cells). Further confirmation was obtained by demonstrating similar properties displayed by a natural soluble CD6 form isolated from human serum, as well as by Jurkat cell transfectants expressing a membrane-bound full-length form of CD6 (6). Accordingly, it was later reported that rshCD6 infusion significantly reduces mouse mortality following septic shock induced by intraperitoneal monobacterial infection of Gram-positive (S. aureus) or Gram-negative (A. baumannii) origin (7). More recently, new evidence shows that not only rshCD6 but also adenovirally expressed mouse sCD6 have protective survival effects on polymicrobial septic shock induced by cecal ligation and puncture (8), the gold standard model for experimental sepsis.
Note: Reproducció del document publicat a: https://doi.org/10.3389/fimmu.2017.00366
It is part of: Frontiers in Immunology, 2017, vol. 8, num. 366
URI: http://hdl.handle.net/2445/176837
Related resource: https://doi.org/10.3389/fimmu.2017.00366
ISSN: 1664-3224
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Biomedicina)

Files in This Item:
File Description SizeFormat 
673419.pdf109.63 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons