Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/176883
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRüdiger, Sten-
dc.contributor.authorPlietzsch, Anton-
dc.contributor.authorSagués i Mestre, Francesc-
dc.contributor.authorSokolov, Igor M., 1958--
dc.contributor.authorKurths, Jürgen-
dc.date.accessioned2021-04-29T09:57:05Z-
dc.date.available2021-04-29T09:57:05Z-
dc.date.issued2020-04-03-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2445/176883-
dc.description.abstractEpidemics and evolution of many pathogens occur on similar timescales so that their dynamics are often entangled. Here, in a first step to study this problem theoretically, we analyze mutating pathogens spreading on simple SIR networks with grid-like connectivity. We have in mind the spatial aspect of epidemics, which often advance on transport links between hosts or groups of hosts such as cities or countries. We focus on the case of mutations that enhance an agent's infection rate. We uncover that the small-world property, i.e., the presence of long-range connections, makes the network very vulnerable, supporting frequent supercritical mutations and bringing the network from disease extinction to full blown epidemic. For very large numbers of long-range links, however, the effect reverses and we find a reduced chance for large outbreaks. We study two cases, one with discrete number of mutational steps and one with a continuous genetic variable, and we analyze various scaling regimes. For the continuous case we derive a Fokker-Planck-like equation for the probability density and solve it for small numbers of shortcuts using the WKB approximation. Our analysis supports the claims that a potentiating mutation in the transmissibility might occur during an epidemic wave and not necessarily before its initiation.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-020-62597-5-
dc.relation.ispartofScientific Reports, 2020, vol. 10, num. 1, p. 5919-
dc.relation.urihttps://doi.org/10.1038/s41598-020-62597-5-
dc.rightscc-by (c) Rüdiger, Sten et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationMicroorganismes patògens-
dc.subject.classificationEpidèmies-
dc.subject.classificationEquació de Fokker-Planck-
dc.subject.otherPathogenic microorganisms-
dc.subject.otherEpidemics-
dc.subject.otherFokker-Planck equation-
dc.titleEpidemics with mutating infectivity on small-world networks-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec701515-
dc.date.updated2021-04-29T09:57:05Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid32246023-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
701515.pdf1.44 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons