Please use this identifier to cite or link to this item:
Title: The axial charge of the triton from lattice QCD
Author: Parreño García, Assumpta
Shanahan, P.E.
Wagman, Michael
Winter, Frank
Chang, Emmanuel
Detmold, William
Illa, Marc
Keywords: Cromodinàmica quàntica
Física nuclear
Quantum chromodynamics
Nuclear physics
Issue Date: 29-Apr-2021
Publisher: American Physical Society
Abstract: The axial charge of the triton is investigated using lattice quantum chromodynamics (QCD). Extending previous work at heavier quark masses, calculations are performed using three ensembles of gauge field configurations generated with quark masses corresponding to a pion mass of 450 MeV and a single value of the lattice spacing. Finite-volume energy levels for the triton, as well as for the deuteron and diproton systems, are extracted from analysis of correlation functions computed on these ensembles, and the corresponding energies are extrapolated to infinite volume using finite-volume pionless effective field theory (FVEFT). It is found with high likelihood that there is a compact bound state with the quantum numbers of the triton at these quark masses. The axial current matrix elements are computed using background field techniques on one of the ensembles and FVEFT is again used to determine the axial charge of the proton and triton. A simple quark mass extrapolation of these results and earlier calculations at heavier quark masses leads to a value of the ratio of the triton to proton axial charges at the physical quark masses of g3HA/gpA=0.91+0.07−0.09. This result is consistent with the ratio determined from experiment and prefers values less than unity (in which case the triton axial charge would be unmodified from that of the proton), thereby demonstrating that QCD can explain the modification of the axial charge of the triton.
Note: Reproducció del document publicat a:
It is part of: Physical Review D, 2021, vol. 103, num. 7, p. 074511
Related resource:
ISSN: 2470-0010
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
706850.pdf1.95 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.