Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/177032
Title: On the construction and algebraic semantics of relevance logic
Author: Gastón Codony, Andrea
Director/Tutor: Gispert Brasó, Joan
Keywords: Lògica matemàtica
Treballs de fi de grau
Lògica algebraica
Mathematical logic
Bachelor's theses
Algebraic logic
Issue Date: 21-Jun-2020
Abstract: [en] The truth-functional interpretation of classical implication gives rise to relevance paradoxes, since it doesn't adequately model our usual understanding of a valid implication, which assumes the antecedent is relevant to the truth of the consequent. This work gives an overview of the system $\mathbf{R}$ of relevance logic, which aims to avoid said paradoxes. We present the logic $\mathbf{R}$ with a Hilbert calculus and then prove the Variable-sharing Theorem. We also give an equivalent algebraic semantics for $\mathbf{R}$ and a semantics for its first-degree entailment fragment.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Joan Gispert Brasó
URI: https://hdl.handle.net/2445/177032
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
177032.pdfMemòria1.17 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons