Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReverter Comes, Ferran-
dc.contributor.authorVegas Lozano, Esteban-
dc.contributor.authorOller i Sala, Josep Maria-
dc.description.abstractMicroarray technology has been advanced to the point at which the simultaneous monitoring of gene expression on a genome scale is now possible. Microarray experiments often aim to identify individual genes that are differentially expressed under distinct conditions, such as between two or more phenotypes, cell lines, under different treatment types or diseased and healthy subjects. Such experiments may be the first step towards inferring gene function and constructing gene networks in systems biology. The term ”gene expression profile” refers to the gene expression values on all arrays for a given gene in different groups of arrays. Frequently, a summary statistic of the gene expression values, such as the mean or the median, is also reported. Dot plots of the gene expression measurements in subsets of arrays, and line plots of the summaries of gene expression measurements are the most common plots used to display gene expression data (See for example Chambers (1983) and references therein)
dc.format.extent20 p.-
dc.relation.isformatofReprodució del document publicat a:
dc.relation.ispartofChapter 1 in: Sanguansat, Parinya. 2012. Principal Component Analysis - Multidisciplinary Applications. IntechOpen. ISBN: 978-953-51-0129-1. DOI: 10.5772/2694. pp: 1-20.-
dc.rightscc by (c) Reverter Comes, Ferran et al., 2012-
dc.subject.classificationExpressió gènicacat
dc.subject.otherProtein microarrayseng
dc.subject.otherGene expressioneng
dc.titleKernel Methods for Dimensionality Reduction Applied to the «Omics» Dataca
Appears in Collections:Llibres / Capítols de llibre (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
261411.pdf327.68 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons